Saltar al documento

Cadena DE Transporte DE Electrones

Asignatura

Bioquimica General

40 Documentos
Los estudiantes compartieron 40 documentos en este curso
Año académico: 2019/2020
Subido por:

Comentarios

Inicia sesión (Iniciar sesión) o regístrate (Registrarse) para publicar comentarios.

Studylists relacionadas

Bioquímica gral.

Vista previa del texto

CADENA DE TRANSPORTE DE ELECTRONES

La cadena de transporte de electrones es una serie de transportadores de electrones que se  encuentran en la membrana plasmática de bacterias, en la membrana interna mitocondrial o en  las membranas tilacoidales, que mediante reacciones bioquímicas producen trifosfato de  adenosina (ATP), que es el compuesto energético que utilizan los seres vivos. Solo dos fuentes de  energía son utilizadas por los organismos vivos: reacciones de reducción-oxidación y la luz solar  (fotosíntesis). Los organismos que utilizan las reacciones redox para producir ATP se les conoce  con el nombre de quimioautótrofos, mientras que los que utilizan la luz solar para tal evento se les conoce por el nombre de fotoautótrofos. Ambos tipos de organismos utilizan sus cadenas de  transporte de electrones para convertir la energía en ATP.

Conceptos generales

La misión de la cadena transportadora de electrones es la de crear un gradiente  electroquímico que se utiliza para la síntesis de ATP.  4  Dicho gradiente electroquímico se consigue  mediante el flujo de electrones entre diversas sustancias de esta cadena que favorecen en último  caso la translocación de protones que generan el gradiente anteriormente mencionado. De esta  forma podemos deducir la existencia de tres procesos totalmente dependientes:

 un flujo de electrones desde sustancias individuales;

 un uso de la energía desprendida de ese flujo de electrones que se utiliza para la  translocación de protones en contra de gradiente, por lo que energéticamente estamos  hablando de un proceso desfavorable;

 un uso de ese gradiente electroquímico para la formación de ATP mediante un proceso  favorable desde un punto de vista energético.

Antecedentes

Las reacciones redox son reacciones químicas en las cuales los electrones son transferidos desde  una molécula donadora hacia una molécula aceptora. La fuerza que conduce a esta clase de  reacciones es la energía libre de Gibbs de los reactivos y los productos. La energía libre de Gibbs es la energía disponible para realizar un trabajo. Ninguna reacción que incremente la energía libre de  Gibbs total de un sistema se realizará de forma espontánea.

La transferencia de electrones desde moléculas altamente energéticas (donadoras) hacia  moléculas de bajo poder energético (aceptoras) puede ser espaciado en una serie de reacciones  redox intermediarias, que en definitiva forman una cadena de transporte. El hecho de que estas  reacciones sean termodinámicamente posibles no significa que puedan ocurrir; por ejemplo una  mezcla de hidrógeno y oxígeno no entra en ignición de forma espontánea, se requiere  suplementar cierta energía de activación o bajar la energía de activación de la reacción. Los  sistemas biológicos usan estructuras complejas que reducen la energía de activación de las  reacciones bioquímicas.

El transporte de electrones se realiza mediante reacciones que son termodinámicamente  favorables, y han sido acopladas a reacciones que termodinámicamente no lo son, como por  ejemplo son la separación de carga, la creación de un gradiente osmótico o el cootransporte. De  esta forma, la energía libre del sistema baja y hace posible que el proceso se lleve a cabo. Las  macromoléculas biológicas que catalizan este tipo de reacciones desfavorables,  termodinámicamente hablando, se han encontrado en todas las formas de vida conocidas, y solo  realizan estas funciones si y solo si están acopladas a reacciones termodinámicas favorables y que  ocurran a la vez de las que no lo son.

La cadena de transporte de electrones produce energía para la formación de un gradiente  electroquímico, es decir se utiliza ese flujo para el transporte de sustancias a través de membrana. Este gradiente se utiliza para realizar, posteriormente un trabajo mecánico, como puede ser la  rotación de un flagelo bacteriano o la síntesis de ATP, que es imprescindible para un organismo.  Esta cadena también consiste en una serie de transportadores que actúan secuencialmente, los  cuales son generalmente proteínas integrales de membrana con grupos prostéticos capaces de  aceptar y/o donar 1 o 2 electrones.

El ATP también se puede obtener de otras formas, como por ejemplo en la fosforilación a nivel de  sustrato. Existen organismos que obtienen el ATP exclusivamente mediante fermentación, pero en la mayoría de los casos la generación de grandes cantidades de ATP se realiza a través de cadenas  de transportes de electrones.

Complejo II

Complejo I

El complejo I o NADH deshidrogenasa o NADH:ubiquinona oxidoreductasa (EC 1.6.5) capta dos  electrones del NADH y los transfiere a un transportador liposoluble denominado ubiquinona (Q).  El producto reducido, que se conoce con el nombre de ubiquinol (QH 2 ) puede difundir libremente  por la membrana. Al mismo tiempo, el Complejo I transloca cuatro protones a través de  membrana y produce un gradiente de protones.

El flujo de electrones ocurre de la siguiente forma:

El NADH es oxidado a NAD+, y reduce al FMN a FMNH 2  en un único paso que implica a dos  electrones. El siguiente transportador de electrones es un centro Fe-S que solo puede aceptar un  electrón y transferirlo a la ubiquinona generando una forma reducida, denominada semiquinona.  Esta semiquinona vuelve a reducirse con el otro electrón que quedaba, generando el ubiquinol,  QH 2 . Durante este proceso, cuatro protones se translocan a través de la membrana interna  mitocondrial, desde la matriz hacia el espacio intermembrana.

Complejo II

El Complejo II o succinato deshidrogenasa; [1] EC 1.3.5 no es una bomba de protones. Además es la única enzima del ciclo de Krebs asociado a membrana. Antes de que este complejo actúe, el  FADH2 se forma durante la conversión de succinato en fumarato en el ciclo del ácido cítrico. A  continuación los electrones son transferidos por medio de una serie de centros FeS hacia Q. EL  glicerol-3-fosfato y el acetil-CoA también transfieren electrones a Q mediante vías diferentes en  que participan flavoproteínas.

Complejo III

El complejo III o complejo citocromo bc 1 ; EC 1.10.2, obtiene dos electrones desde QH 2  y los transfiere a  dos moléculas de citocromo c, que es un transportador de electrones hidrosoluble que se  encuentra en el espacio intermembrana de la mitocondria. Al mismo tiempo, transloca cuatro  protones a través de la membrana por los dos electrones transportados desde el ubiquinol.

Complejo IV

El complejo IV o citocromo c oxidasa; EC 1.9.3 capta cuatro electrones de las cuatro moléculas  de citocromo c y se transfieren al oxígeno (O 2 ), para producir dos moléculas de agua (H 2 O). Al  mismo tiempo, se translocan cuatro protones al espacio intermembrana, por los cuatro  electrones. Además "desaparecen" de la matriz 2 protones que forman parte del H 2 O.

Acoplamiento con la fosforilación oxidativa

La hipótesis del acoplamiento quimiosmótico, lo que el valió el Premio Nobel de Química a Peter  D. Mitchell, explica que la cadena de transporte de electrones y la fosforilación oxidativa están  acopladas por el gradiente de protones. El flujo de protones crea un gradiente de pH y un  gradiente electroquímico. Este gradiente de protones es usado por la ATP sintasa para formar ATP  vía la fosforilación oxidativa. La ATP sintasa actúa como un canal de iones que "devuelve" los  protones a la matriz mitocondrial. Durante esta vuelta, la energía libre de Gibbs producida durante

la generación de las formas oxidadas de los transportadores de electrones es liberada. Esta  energía es utilizada por la síntesis de ATP, catalizada por el componente F 1  del complejo FOF 1  ATP  sintasa.

El acoplamiento con la fosforilación oxidativa es un paso clave en la producción de ATP. Sin  embargo, en ciertas ocasiones desacoplarlo puede tener usos biológicos. En la membrana interna  mitocondrial de los tejidos adiposos marrones existe una gran cantidad de termogenina, que es  una proteína desacopladora, que actúa como una vía alternativa para el regreso de los protones a  la matriz. Esto resulta en consumo de la energía en termogénesis en vez de utilizarse para la  producción de ATP. Esto puede ser útil para generar calor cuando sea necesario, por ejemplo en  invierno o durante la hibernación de ciertos animales.

También se conocen desacoplantes sintéticos como el caso del 2,4-dinitrofenol, que se ha usado  como pesticida, debido a su alta toxicidad.

Resumen

La cadena de transporte de electrones mitocondrial utiliza electrones desde un donador ya sea  NADH o FADH  2  y los pasa a un aceptor de electrones final, como el O 2 , mediante una serie de  reacciones redox. Estas reacciones están acopladas a la creación de un gradiente de protones  generado por los complejos I, III y IV. Dicho gradiente es utilizado para generar ATP mediante la  ATP sintasa.

Las reacciones catalizadas por los complejos I y III están en equilibrio. Las concentraciones de  reactivos y productos son aproximadamente los mismos. Esto significa que estas reacciones son  reversibles al incrementar la concentración de producto.

Cadena transportadora de electrones en bacterias

En eucariotas, el NADH es el donador de electrones más importante. En procariotas, es  decir bacterias y arqueas la situación es algo más complicada, debido a que hay un gran número  de donante de electrones y un gran número de aceptores. Si generalizamos el transporte en  bacterias este podría quedar de la siguiente forma:

                     Donador            Donador                    Donador

                                        ↓                        ↓

                                     Aceptor                 Aceptor

Es posible que los electrones entren a la cadena en tres niveles: un nivel en donde participa una  deshidrogenasa, otro en la que actúa un reservorio de quinonas, o en un nivel en el que actúa un  transportador móvil como es el citocromo. Estos niveles corresponden a sucesivos potenciales  redox más positivos o sucesivas bajadas de las diferencias en el potencial relativo en los aceptores  de electrones. En otras palabras, corresponden a cambios cada vez menores en la energía libre de  Gibbs.

Las bacterias pueden usar múltiples cadenas de transporte de electrones, e incluso  simultáneamente. Las bacterias pueden usar varios donadores diferentes de electrones. Por  ejemplo, Escherichia coli, cuando crece en condiciones aeróbicas usando glucosa como fuente de 

matriz y la aparición de protones en el espacio intermembrana. Este es el caso del complejo III de  las mitocondrias, en el cual se observa el ciclo Q. Algunas deshidrogenasas son bombas de  protones, otras no. La mayoría de las oxidasas y la mayoría de las reductasas si lo son, aunque  existen excepciones. El citocromo bc 1  es una bomba de protones en muchas bacterias, aunque no  en todas (por ejemplo, Escherichia coli es una excepción).

Citocromos

Los citocromos son proteínas que contienen porfirinas que tienen ligado un átomo de hierro.  Existen citocromos que son hidrosolubles, otros que son liposolubles. Otra peculiaridad es que  existen citocromos móviles como por ejemplo el citocromo c. Aunque la gran mayoría funcionan  asociadas a macromoléculas como pueden ser los complejos III y IV.

Oxidasas y reductasas terminales

Cuando una bacteria crece en ambientes aeróbicos, el aceptor final de los electrones es reducido  hasta agua por una enzima que se denomina oxidasa. Cuando una bacteria crece en ambientes  de hipoxia, el aceptor de electrones es reducido por una enzima que se denomina reductasa. En  las mitocondrias el complejo terminal es la citocromo oxidasa, pero las bacterias aeróbicas pueden utilizar varias oxidasas. Escherichia coli, no presenta citocromo oxidasa, por lo que en condiciones  aeróbicas utiliza dos quinol oxidasa diferentes para reducir el oxígeno a agua. Ambas quinol  oxidasas actúan a su vez como bombas de protones.

Las bacterias anaeróbicas no pueden utilizar el oxígeno como aceptor final de los electrones, por lo que requieren reductasas especializadas para cada una de los aceptores. Escherichia coli puede  usar, por ejemplo, una fumarato reductasa, la nitrato reductasa, la nitrito reductasa o la DMSO  reductasa dependiendo de si existen esos aceptores en el medio en el que estás creciendo.

Aceptores de electrones

Al igual que existen un gran número de donadores de electrones, también existen un gran número de aceptores que pueden ser de ambos tipos, es decir de origen orgánico o inorgánico. Si el  oxígeno está disponible, se usará como aceptor, ya que genera mayor producción energética. En  los ambientes anaeróbicos, se puede utilizar NO 3 - , NO 2 - , Fe3+, SO 4 2-, CO 2  y pequeñas moléculas  orgánicas como por ejemplo el fumarato.

Resumen

En general, las cadenas de transporte de electrones bacterianas son inducibles. Según el medio en  el que estén creciendo, las bacterias sintetizarán distintos complejos transmembranas que  producirán diferentes transportes en sus membranas.

Cadena de transporte de electrones fotosintética[editar]

En la fosforilación oxidativa, los electrones se transfieren desde un donador de electrones de alta  energía hasta un aceptor a través de una cadena de transporte de electrones. En  la fotofosforilación, se usa la energía de la luz solar para crear un donador de electrones altamente energético y un aceptor de esos electrones. Los electrones se transfieren desde el donador hasta 

el aceptor a través de una cadena de transporte totalmente diferente a la que se observa en las  mitocondrias.

La cadena de transporte de electrones fotosintética tiene varias similitudes con la cadena  oxidativa. Tienen transportadores móviles, transportadores liposolubles y móviles,  transportadores hidrosolubles y bombas de protones, que se encargan de generar el gradiente  electroquímico.

¿Ha sido útil este documento?

Cadena DE Transporte DE Electrones

Asignatura: Bioquimica General

40 Documentos
Los estudiantes compartieron 40 documentos en este curso
¿Ha sido útil este documento?
CADENA DE TRANSPORTE DE ELECTRONES
La cadena de transporte de electrones es una serie de transportadores de electrones que se
encuentran en la membrana plasmática de bacterias, en la membrana interna mitocondrial o en
las membranas tilacoidales, que mediante reacciones bioquímicas producen trifosfato de
adenosina (ATP), que es el compuesto energético que utilizan los seres vivos. Solo dos fuentes de
energía son utilizadas por los organismos vivos: reacciones de reducción-oxidación y la luz solar
(fotosíntesis). Los organismos que utilizan las reacciones redox para producir ATP se les conoce con
el nombre de quimioautótrofos, mientras que los que utilizan la luz solar para tal evento se les
conoce por el nombre de fotoautótrofos. Ambos tipos de organismos utilizan sus cadenas de
transporte de electrones para convertir la energía en ATP.
Conceptos generales
La misión de la cadena transportadora de electrones es la de crear un gradiente
electroquímico que se utiliza para la síntesis de ATP. 4 Dicho gradiente electroquímico se consigue
mediante el flujo de electrones entre diversas sustancias de esta cadena que favorecen en último
caso la translocación de protones que generan el gradiente anteriormente mencionado. De esta
forma podemos deducir la existencia de tres procesos totalmente dependientes:
un flujo de electrones desde sustancias individuales;