Skip to document
This is a Premium Document. Some documents on Studocu are Premium. Upgrade to Premium to unlock it.

Proiect Managementul Documentelor Petris Daniel

———-
Course

Tehnologii Web Web Technologies

25 Documents
Students shared 25 documents in this course
Academic year: 2022/2023
Uploaded by:
Anonymous Student
This document has been uploaded by a student, just like you, who decided to remain anonymous.
Academia de Studii Economice din București

Comments

Please sign in or register to post comments.

Preview text

Cuprins

  • I. Matematica...................................................
  • II. Etimologie...................................................
  • III. Istorie.......................................................
    • III. Inspirațție, mațemațică pură și aplicață, esțețica mațemațicii...........................
    • III. Perceperea mațemațicii de publicul larg................................................................
    • III. Limbajul mațemațic........................................................................................................
    • III. Demonsțrațția mațemațică...........................................................................................
    • III. Subiecțe.............................................................................................................................
      • III.v. Cantitate..................................................................
      • III.v. Spațiu......................................................................
      • III.v. Schimbare................................................................
      • III.v. Structură..................................................................
    • III. Ramuri.............................................................................................................................. - III.vi.a................................................................................. și metode - III.vi.b........................................................................................ discrete - III.vi.c......................................................................................... aplicate - III.vi.d.................................................................................................... spatiale - III.vi.e................................................................... si postulate celebre
  • IV. Bibliografie...............................................

Cuprins figuri Figură 1................................................................................................................................................... 5 Figură 2................................................................................................................................................... 6 Figură 3................................................................................................................................................... 7

domenii ale matematicii strict pentru interesul abstract exercitat de acestea, ceea ce le transformă într-o abordare mai degrabă legată de artă decât de știință. Din punct de vedere istoric, ramurile majore ale matematicii au derivat din necesitatea de a face calcule comerciale, de a măsura terenuri și de a predetermina evenimente astronomice cu scopuri agriculturale. Aceste domenii specifice pot fi folosite pentru a delimita în mod generic tendințele matematicii până în ziua de astăzi, în sensul delimitării a trei tendințe specifice: studiul structurii, spațiului și al schimbărilor. Studiul structurii se bazează în mod generic pe teoria numerelor: inițial studiul numerelor naturale, numere pare, numere impare apoi numere întregi, continuând cu numere raționale și în sfârșit numere reale, întotdeauna corelate cu operațiile aritmetice între acestea, toate acestea făcând parte din algebra elementară. Investigarea în profunzime a acestor teorii și abstractizarea lor a dus în final la algebra abstractă care studiază printre altele inele și corpuri, structuri care generalizează proprietățile numerelor în sensul obișnuit. Conceptul indispensabil în fizică de vector, generalizat în sensul de spațiu vectorial și studiat în algebra lineară este comun studiului structurii și studiului spațiului. Studiul spațiului pornește în mod natural de la geometrie, începând de la geometria euclidiană și trigonometria familiară în trei dimensiuni și generalizată apoi la geometrie neeuclidiană, care joacă un rol esențial în teoria relativității. O mulțime de teorii legate de posibilitatea unor construcții folosind rigla și compasul au fost încheiate de teoria lui Galois. Ramurile moderne ale geometriei diferențiale și geometriei algebrice abstractizează studiul geometriei în direcții distincte: geometria diferențială accentuează uzul sistemului de coordonate și al direcției, pe când geometria algebrică definește obiectele mai degrabă ca soluții la diverse ecuații polinomiale. Teoria grupurilor investighează conceptul de simetrie în mod abstract, făcând legătura între studiul structurii și al spațiului. Topologia face legătura între studiul spațiului și studiul schimbărilor, punând accent pe conceptul continuității. Studiul schimbării este o necesitate mai ales în cazul științelor naturale, unde măsurarea și predicția modificărilor unor variabile este esențială. Calculul diferențial a fost creat pentru acest scop, pornind de la definiția relativ naturală a funcțiilor dintre diverse dimensiuni și rata lor de schimbare în timp, metodele de rezolvare ale acestora fiind ecuațiile diferențiale. Din considerente practice, este convenabil să se folosească numerele complexe în această ramură. O ramură importantă a matematicii aplicate este statistica, aceasta utilizând teoria probabilității care facilitează definirea, analiza și predicția a diverse fenomene, și care este folosită într-o multitudine de domenii. Figură Euclid, matematician grec, secolul al III-lea î.Hr., așa cum este reprezentat de către Rafael într-un detaliu al lucrării „Școala din Atena” - Etimologie Cuvântul matematică își are originea în cuvântul grecesc μάθημα máthēma, care însemna „învățare”, „studiu”, „știință”, la rândul lui provenind din verbul manthanein, „a învăța”. Termenul mathema a căpătat încă din perioada clasică și sensul precis de „studiu matematic”. Adjectivul corespunzător este μαθηματικός mathēmatikós, însemnând „legat de învățare” sau „studios”, iar mai târziu, „matematic”. Din greacă, termenii au fost preluați în latină, unde științele

matematice, numite în grecește μαθηματικηὴ τέχνη mathēmatikēḗ tékhnē, au fost denumite cu pluralul ars mathematica. Din latină, termenul mathematica a fost preluat în forme asemănătoare în toate limbile europene moderne. Forma aparentă de plural din engleză, ca și pluralul franțuzesc les mathématiques, au revenit în latină sub forma pluralului neutru mathematica (Cicero), pornind de la pluralul grecesc τα μαθηματικά ta mathēmatiká, acesta fiind utilizat de Aristotel cu sensul de „toate lucrurile matematice”. În română, termenul a fost copiat după franțuzescul mathématique și italienescul matematica. - Istorie Este posibil ca oamenii să-și fi dezvoltat anumite abilități matematice încă înainte de apariția scrierii. Cel mai vechi obiect care dovedește existența unei metode de calcul este osul din Ishango, descoperit de arheologul belgian Jean de Heinzelin de Braucourt în regiunea Ishango din Republica Democrată Congo, care datează din 20 înaintea erei noastre. Dezvoltarea matematicii, ca bagaj de cunoștințe transmis de-a lungul generațiilor, în primele civilizații, este legată strict de aplicațiile sale concrete: comerțul, gestiunea recoltelor, măsurarea suprafețelor, predicția evenimentelor astronomice și, câteodată, de ritualurile religioase. Aceste nevoi au dus la împărțirea matematicii în ramuri ce se ocupau cu studiul cantității, structurii și spațiului. Primele descoperiri matematice țin de extragerea rădăcinii pătrate, a rădăcinii cubice, rezolvarea unor ecuații polinomiale, trigonometrie, fracții, aritmetica numerelor naturale etc. Acestea au apărut în cadrul civilizațiilor akkadiene, babyloniene, egiptene, chineze și civilizațiile de pe valea Indului. În Grecia antică, matematica, influențată de lucrările anterioare și de specificațiile filozofice, generează un grad mai mare de abstractizare. Noțiunile de demonstrație și de axiomă apar în această perioadă. Apar două ramuri ale matematicii, aritmetica și geometria. În secolul al III-lea î.Hr., Elementele lui Euclid rezumă și pun în ordine cunoștințele matematice ale Greciei antice. Euclid Figură Civilizația islamică a permis conservarea moștenirii grecești și reunirea ei cu descoperirile din China și India, mai ales în ceea ce privește sistemele de numerație. Domeniile trigonometriei (prin introducerea funcțiilor trigonometrice) și aritmeticii cunosc o dezvoltare deosebită. De asemenea, în această perioadă sunt inventate combinatorica, analiza numerică și algebra liniară. În timpul Renașterii, o parte din textele arabe sunt studiate și traduse în latină. Cercetarea matematică se concentrează în Europa. Calculul algebric se dezvoltă ca urmare a lucrărilor lui François Viète și René Descartes. Newton și Leibniz au inventat, independent, calculul infinitezimal. În secolul al XVIII-lea și secolul al XIX-lea, matematica cunoaște o nouă perioadă de dezvoltare intensă, cu studiul sistematic al structurilor algebrice, începând cu grupurile (Évariste Galois) și inelele (concept introdus de Richard Dedekind). În secolul al XIX-lea, David Hilbert și Georg Cantor dezvoltă o teorie axiomatică asupra căutării fundamentelor matematice. Această dezvoltare a axiomaticii va conduce în secolul al XX-lea la

aproape toate ramurile matematicii, printre care geometrie, calcul infinitesimal, trigonometrie, algebră și teoria numerelor.

  • Inspirațție, mațemațică pură și aplicață, esțețica mațemațicii În zilele noastre, toate științele utilizează rezultatele muncii matematicienilor și multe alte domenii sunt generate de matematica însăși. De exemplu, fizicianul Richard Feynman, a inventat formularea mecanicii cuantice sub forma integralelor de drum folosind o combinație între descoperiri de natură matematică, intuiții fizice și teoria stringurilor, o teorie științifică încă în dezvoltare care încearcă să unifice cele 4 forțe fundamentale din natură, continuând să inspire noi ramuri ale matematicii. Unele ramuri ale matematicii sunt singurele relevante pentru domeniile pe care le-au inspirat și se aplică în continuare pentru rezolvarea problemelor viitoare. Adeseori însă, matematica inspirată de către un domeniu s-a dovedit utilă în multe altele și a reunit problematica generală a conceptelor matematice. Faptul remarcabil că chiar și matematica pură se reflectă în aplicații practice este redat de ceea ce Eugene Wigner a numit "eficiența irațională a matematicii" Arhivat în 28 februarie 2011, la Wayback Machine. Ca în multe alte domenii, explozia de informații din știință a dus la specializări în matematică. O diferență majoră este între matematica pură și matematica aplicată: cei mai mulți matematicieni își fac cercetările separat într-unul din aceste domenii iar alegerea finală este făcută odată cu terminarea studiilor. Câteva domenii din matematica aplicată au fuzionat cu domenii care prin tradiție erau din afara ei și au devenit astfel discipline noi, cum ar fi statistica, cercetarea operațională, și știința calculatoarelor. Cei care au înclinații spre matematică găsesc adesea aspecte estetice în multe domenii din matematică. Mulți matematicieni vorbesc despre eleganța matematicii, despre o estetică intrinsecă și o frumusețe ascunsă. Sunt apreciate simplitatea și generalizarea. Se poate vorbi de frumusețea și eleganța unei demonstrații, cum ar fi cazul demonstrației lui Euclid asupra infinității numerelor prime, a metodei numerice de calcul rapid ca în cazul transformatei rapide Fourier. G. H. Hardy, în „A Mathematician's Apology” își exprima credința că aceste considerații estetice sunt, în ele însele, suficiente pentru a justifica studiul matematicii pure. După Paul Erdős, care ar fi vrut să afle „Cartea” în care Dumnezeu a notat demonstrațiile lui favorite, matematicienii năzuiesc adeseori să găsească demonstrații ale teoremelor care sunt, în special, elegante.) Popularitatea matematicii distractive este un alt indiciu al plăcerii găsite în rezolvarea problemelor de matematică.
  • Perceperea mațemațicii de publicul larg Colaborarea între matematicieni și alte tipuri de specialiști este afectată și de faptul că numeroși intelectuali au despre matematică o imagine deformată și simplificatoare, viziune care a provocat multe daune colaborării interdisciplinare, matematicienii fiind priviți cu suspiciune de anumite tipuri de intelectuali. Această imagine deformată este rezultatul anumitor prezentări didactice înguste, a unei viziuni dogmatice asupra matematicii. Pentru majoritatea oamenilor matematica constituie cea mai neplăcută amintire din timpul școlii, in loc de a fi o mare desfătare. Introducerea neadecvată din punct de vedere pedagogic a unor concepte matematice propuse spre studiu de programele școlare, printr-un context insuficient, creează o puternică impresie elevilor că respectivele noțiuni au fost create pentru a chinui pe elevi. Formarea gândirii matematice a celor care studiază și motivarea lor să simtă o reală bucurie în efectuarea de investigații și cercetări necesită din partea profesorilor o mai redusă importanță

acordată succesului vizibil al unor reacții stereotipe la examene școlare (de exemplu operații de calcul executate mecanic, teoreme și formule redate pe dinafară), complexitatea situației de învățare nelăsând loc intervenției unei proiectări detaliate dinainte, ca într-o lecție model tradițională. - Limbajul mațemațic Matematica folosește un limbaj propriu. Cuvinte din limbajul curent, cum ar fi grup, inel sau corp pot avea un înțeles diferit în limbajul matematic. Mai des însă, termenii sunt creați și introduși în funcție de necesități: izomorfism, topologie, iterație etc. Numărul relativ mare al termenilor noi sau cu înțeles schimbat face ca înțelegerea matematicilor avansate de către nespecialiști să fie dificilă. Limbajul matematic se bazează și pe formule. Motivul principal pentru care au fost introduse simbolurile și termenii noi îl reprezintă necesitatea exprimării cât mai clare sau exacte și concentrate a ideilor (o caracteristică comună științelor exacte, numită rigoare). Rigoarea este necesară pentru a evita teoremele false, generate de interpretări eronate datorate ambiguității sensului unor cuvinte din limbajul natural obișnuit. Limbajul matematic este strâns legat și necesar utilizării in demonstrație matematică. Aceasta evidențiază natura de sistem deductiv a matematicii. Trebuie subliniat faptul că există și un limbaj matematic (metalimbaj) ce descrie matematica însăși. Acest limbaj este logica. - Demonsțrațția mațemațică Demonstrația matematică este aspectul formal principal al matematicii ca sistem deductiv unde variabila logică valoare de adevăr a propozițiilor este stabilită pornind de la un număr mic de propoziții prime - așa numitele axiome - a căror valoare de adevăr se ia ca punct de pornire. Elementele conținutului matematic, obiectele studiului matematic (numere, mărimi, funcții, forme geometrice, etc) sunt redate în propoziții logice ce exprimă proprietăți sau relații. O demonstrație poate conduce prin rezultatul ei la propoziții adevărate (teoreme) care sunt utile la demonstrarea altor teoreme. Se poate obține astfel un șir de propoziții demonstrate. Un exemplu de demonstrații în lanț este reprezentat de teorema lui Pitagora ca punct de pornire care permite obținerea demonstrării pentru teorema cosinusului care este utilă mai departe demonstrației pentru, de exemplu, teorema lui Stewart sau teorema paralelogramului. Un alt aspect al unei demonstrații este lungimea sa, dată de numărul de propoziții din lanțul deducerii propoziției finale. Se poate reprezenta ca o structură (graf orientat) cu puncte de ramificație (noduri) în care se combină două propoziții pentru a rezulta următoarea propoziție a șirului. Nodurile pot marca fiecare propoziție dintr-un șir, ele fiind puncte de ramificație în situația în care se intersectează șirurile de propoziții. Pentru teorema cosinusului în cazul unghiului obtuz se intersectează două șiruri de propoziții spre deosebire de unghiul ascuțit unde se intersectează trei șiruri de propoziții la substituția unor mărimi între expresiile algebrice care conțin lungimile unor segmente. Matematica privită ca știință Carl Friedrich Gauss, el însuși cunoscut ca „prinț al matematicii”, numea matematica „regină a științelor”. În latină – Regina Scientiarum, în germană – Königin der Wissenschaften. Ambele expresii sunt legate de cuvântul „știință” care înseamnă (domeniu de) cunoștințe. Într-adevăr, în acest sens, nu există îndoieli că matematica este o știință. Restrângerea sensului de știință doar la domenii

  • Subiecțe
    • Cantitate Studiul cantității începe cu numerele (mai întâi cu numerele naturale și întregi) și cu operațiile aritmetice. Alte proprietăți ale întregilor sunt studiate de teoria numerelor, din care au apărut unele rezultate cunoscute, precum Marea teoremă a lui Fermat, dar și unele teoreme încă nerezolvate: teoria numerelor prime gemene și Conjectura Goldbach. Pe măsură ce sistemul de numerație a avansat, numerele întregi au fost considerate un subset al numerelor raționale, care la rândul său sunt conținute de mulțimea numerele reale. Numerele reale sunt folosite la reprezentarea funcțiilor continue. Mai târziu au fost introduse numerele complexe, urmate de numerele hipercomplexe: cuaternion, octonion etc. .
  • Numerele raționale - În matematică, un număr rațional este un număr real care se poate exprima drept raportul a două numere întregi, de obicei scris sub formă de fracție ordinară: a/b, unde b este nenul. Numele "rațional" nu provine de la "rațiune"="gândire", ci de la "rație"="raport". Orice număr rațional se poate scrie într-o infinitate de forme, de exemplu {3/6=2/4=1/2=...} Forma cea mai simplă este cea în care {\displaystyle a}{\displaystyle a} și {\displaystyle b}{\displaystyle b} nu au divizori comuni; toate numerele raționale dispun de o asemenea formă. Forma zecimală a unui număr rațional este într-un fel sau altul periodică (dacă dezvoltarea este finită, partea periodică o formează zerourile implicite de după ultima zecimală nenulă). Aceasta este adevărat pentru orice bază întreagă mai mare decât 1. Reciproc, dacă scrierea unui număr într-o bază este periodică, atunci dezvoltarea sa în orice bază este periodică, și în plus numărul este rațional. Mulțimea tuturor numerelor raționale se notează Q. Mulțimea Q, deși conține un număr infinit de elemente, este o mulțime numărabilă, adică are același cardinal (potență, putere) ca N și ca Z. Altfel spus, există funcții bijective între Q și N, precum și între Q si Z. Q, împreună cu adunarea și înmulțirea, formează un corp comutativ. Orice șir convergent de numere raționale își are limita în R. În termeni de topologie: închiderea lui Q este R. Nu orice șir convergent de numere raționale are limita tot rațională (ea poate fi totuși irațională). Prin contrast, un număr real care nu este rațional se numește număr irațional. Forma sa zecimală are un număr infinit (nesfârșit) de zecimale, care nu au voie să se repete (sunt neperiodice). Faptul că există numere reale care nu sunt raționale a fost pus în evidență încă din antichitate - astfel, nu s-a putut construi un pătrat a cărui diagonală să fie un multiplu rațional al laturii sale, și nu s-a putut găsi un cerc a cărui circumferință să fie un multiplu rațional al razei sale (problema cuadraturii cercului).
  • Numărul real - Mulțimea numerelor reale este alcătuită din mulțimea numerelor pozitive și negative, cu oricâte zecimale (inclusiv cu un număr infinit de zecimale neperiodice). Numerele reale sunt definite intuitiv ca fiind acele numere care sunt în corespondență unu-la-unu cu punctele de pe o dreaptă infinită: axa numerelor. Termenul de "număr real" a apărut ulterior noțiunii de "număr imaginar"[necesită citare]. Numerele reale pot fi raționale sau iraționale, algebrice sau transcendente, pozitive sau negative. Numerele reale iraționale pot fi aproximate prin șiruri de numere raționale prin aproximație diofantică cu o eroare prin lipsă de 10-n. Simbolul mulțimii numerelor reale este R (sau alternativ, {\displaystyle \mathbb {R} }{\displaystyle \mathbb {R} }). Este o mulțime nenumărabilă.
  • Numerele complexe - În matematică, numerele complexe sunt numere apărute ca soluții

ale ecuațiilor de forma {\displaystyle \ x^{2}+p=0}{\displaystyle \ x^{2}+p=0}, cu p număr real strict pozitiv, așa cum numerele iraționale apăruseră din necesitatea de a descrie soluții ale ecuațiilor de forma {\displaystyle \ x^{2}-q=0}{\displaystyle \ x^{2}-q=0}, unde q nu este un pătrat perfect.

  • Numărul natural - În matematică, numerele naturale sunt numerele folosite pentru numărarea și ordonarea obiectelor. Sunt numerele întregi strict pozitive (1, 2, 3, ...). Atașează o măsură unei mulțimi de obiecte. În alte contexte, de exemplu în teoria mulțimilor sau în teoria grupurilor, 0 este primul număr naturalțimea tuturor numerelor naturale se notează de obicei cu N (N îngroșat) sau {\displaystyle \mathbb {N} }{\displaystyle \mathbb {N} }. Este inclusă (ca submulțime) în mulțimea numerelor întregi {\displaystyle \mathbb {Z} }{\displaystyle \mathbb {Z} }.
  • Numerele întregi - Numerele întregi sunt o mulțime compusă din numerele naturale {1, 2, 3, 4, ...}, împreună cu negativele acestora {−1, −2, −3, −4, ...} și cu numărul zero. Mulțimea numerelor întregi se notează de obicei cu Z (Z îngroșat) sau {\displaystyle \mathbb {Z} }{\displaystyle \mathbb {Z} }, care provine de la cuvântul german Zahlen, „numere”.
  • Spațiu Studiul spațiului a început cu studiul geometriei, mai exact, al geometriei euclidiene. Trigonometria combină spațiul și numerele și cuprinde cunoscuta teoremă a lui Pitagora. Studiile moderne generalizează teoriile asupra spațiului introducând noțiunea de geometrie neeuclidiană în locul celei de geometrie euclidiană. Geometria neeuclidiană ocupă un rol central în teoria relativității generalizate și topologie. Cantitatea și spațiul au roluri importante în geometria analitică, geometrie diferențială și geometrie algebrică. În cadrul geometriei diferențiale apar conceptele de „fascicul de mătase” (fiber bundle) și calculul spațiilor topologice. Geometria algebrică descrie obiectele geometrice prin intermediul unor seturi de soluții ale ecuațiilor polinomiale, combinând conceptele de cantitate, spațiu și studiul grupurilor topologice, acestea combinând noțiunile de structură și spațiu. Grupurile Lie sunt folosite în studiul spațiului, structurii și schimbării. Topologia are foarte multe ramificații și a fost domeniul din matematică cu cea mai mare dezvoltare în secolul XX, cuprinzând faimoasa conjectură a lui Poicaré și controversata teoremă a celor patru culori, a cărei demonstrație, făcută doar pe calculator, nu a fost făcută încă de om.
  • Teorema lui Pitagora - Teorema lui Pitagora este una dintre cele mai cunoscute teoreme din geometria euclidiană, constituind o relație între cele trei laturi ale unui triunghi dreptunghic. Teorema lui Pitagora afirmă că în orice triunghi dreptunghic, suma pătratelor catetelor este egală cu pătratul ipotenuzei (latura opusă unghiului drept). Teorema poate fi scrisă sub forma unei relații între cele trei laturi a, b și c, câteodată denumită relația lui Pitagora . Deși este în discuție faptul că teorema putea fi cunoscută dinaintea lui, aceasta a fost totuși denumită după matematicianul din Grecia Antică, Pitagora (c. 570 – c. 495 î.Hr.) din moment ce el este cel care, în mod tradițional, a fost recunoscut pentru prima demonstrație a sa. Există unele dovezi cum că matematicienii babilonieni ar fi înțeles formula, dar foarte puține indică o aplicație într-un cadru de lucru matematic.[5][6] Matematicienii din Mesopotamia, India și China au descoperit teorema independent și, în unele cazuri, au oferit demonstrații în cazuri speciale. Această teoremă a primit numeroase demonstrații – probabil cele mai multe dintre toate teoremele din matematică. Acestea sunt foarte diversificate, incluzând dovezi atât geometrice cât și

vectoriale (puncte, linii, poligoane) împărtășesc geometria și spațiul.

  • Geometrie Fractala - Colocvial, un fractal este o figură geometrică fragmentată sau frântă care poate fi divizată în părți, astfel încât fiecare dintre acestea să fie (cel puțin aproximativ) o copie miniaturală a întregului".[1] Termenul a fost introdus de Benoît Mandelbrot în 1975 și este derivat din latinescul fractus, însemnând "spart" sau "fracturat". Fractalul, ca obiect geometric, are în general următoarele caracteristici: -Are o structură fină la scări arbitrar de mici. -Este prea neregulat pentru a fi descris în limbaj geometric euclidian tradițional. -Este autosimilar (măcar aproximativ sau stohastic). -Are dimensiunea Hausdorff mai mare decât dimensiunea topologică (deși această cerință nu este îndeplinită de curbele Hilbert). -Are o definiție simplă și recursivă. Deoarece par identici la orice nivel de magnificare, fractalii sunt de obicei considerați ca fiind infinit complecși (în termeni informali). Printre obiectele naturale care aproximează fractalii până la un anumit nivel se numără norii, lanțurile montane, arcele de fulger, liniile de coastă și fulgii de zăpadă. Totuși, nu toate obiectele autosimilare sunt fractali— de exemplu, linia reală (o linie dreaptă euclidiană) este autosimilară, dar nu îndeplinește celelalte caracteristici
  • Schimbare Subiecte legate de variația funcțiilor matematice sau de variația numerelor.
  • Functii - În matematică, o funcție este o relație care asociază fiecărui element dintr-o mulțime (domeniul) un singur element dintr-o altă (posibil din aceeași) mulțime (codomeniul). Noțiunea de funcție este fundamentală în aproape toate ramurile matematicii și în toate științele exacte.
  • Integrala - În analiza matematică, integrala unei funcții este o generalizare a noțiunilor de arie, masă, volum și sumă. Procesul de determinare a unei integrale se numește integrare. Spre deosebire de noțiunea înrudită de derivată, există mai multe definiții posibile ale integralei, fiecare cu suportul său tehnic. Acestea sunt însă compatibile. Oricare două moduri de integrare a unei funcții vor da aceleași rezultate când ambele sunt definite. În mod intuitiv, integrala unei funcții continue, pozitive, f(x), de variabilă reală și luând valori reale între două puncte a și b, reprezintă valoarea ariei mărginite de segmentele x=a, x=b, axa x și graficul funcției f(x).
  • Calculul vectorial - Calculul vectorial cuprinzând domeniile de Algebra vectorială si Analiza vectorială cât și Teoria câmpurilor, sunt domenii ale matematicii care se ocupă cu studiul matematic a spațiului vectorial din punct de vedere al algebrei matematice cât si a analizei matematice a vectorilor dintr-un spațiu prehilbertian de una sau mai multe dimensiuni (unele rezultate — cele care implică produsul vectorial — pot fi aplicate doar în trei dimensiuni). Acest domeniu constă dintr-o serie de formule, teoreme și tehnici de rezolvare a problemelor utile în inginerie și fizică. Analiza vectorială a fost formulată de inginerul american J. Willard Gibbs și de inginerul britanic Oliver Heaviside. Calculul vectorial tratează câmpurile de scalari, care asociază un scalar fiecărui punct din spațiu,

și câmpurile de vectori, care asociază un vector fiecărui punct din spațiu. De exemplu, temperatura unui bazin cu apă este un câmp scalar: fiecărui punct i se asociază o valoare scalară pentru temperatură. Curgerea apei într-un râu, în schimb, este un câmp vectorial: fiecărui punct de pe cursul râului i se asociază un vector viteză.

  • Ecuatie diferentiala - În matematică, o ecuație diferențială este o ecuație pentru o funcție necunoscută de una sau mai multe variabile; ea are forma unei relații între funcția însăși și un număr de derivate ale sale de diferite ordine. Ecuațiile diferențiale au un rol important în formularea cantitativă a problemelor din știință și tehnică. O ecuație diferențială ordinară determină dependența funcției necunoscute de o singură variabilă și conține doar derivate în raport cu această variabilă. O ecuație cu derivate parțiale se referă la o funcție de mai multe variabile și conține derivate parțiale.
  • Teoria haosului - Teoria haosului sau teoria sistemelor complexe este o ramură a matematicii și fizicii moderne care descrie comportamentul anumitor sisteme dinamice neliniare, a acelor sisteme care prezintă fenomenul de instabilitate numit sensibilitate față de condițiile inițiale, motiv pentru care comportamentul lor pe termen relativ lung (deși se conformează legilor deterministe) este imprevizibil, adică aparent haotic (de unde și denumirea teoriei). Teoria haosului a fost formulată de Edward Lorenz în 1960. Savantul spunea, "Un fenomen care pare a se desfășura la întâmplare, are de fapt un element de regularitate ce ar putea fi descris matematic." În termeni mai simpli, există o ordine ascunsă în orice evoluție aparent haotică a oricărui sistem dinamic complex.
  • Structură Multe obiecte matematice, precum mulțimile de numere și funcțiile, au o structură internă. Proprietățile structurale ale acestor obiecte sunt investigate în studiul grupurilor, inelelor, câmpurilor și altor sisteme abstracte, care sunt la rândul lor studiate de algebra abstractă. Un concept important în acest domeniu este cel de vector, generalizat în spații vectoriale. Studiul vectorilor combină trei zone fundamentale ale matematicii: cantitatea, structura și spațiul. Algebra vectorială dezvoltă cercetarea într-o a patra zonă de cercetare fundamentală, cea a schimbării. Un număr de probleme vechi din acest domeniu au fost rezolvate folosind teoria lui Galois.
  • Teoria numerelor - Teoria numerelor (sau aritmetică / aritmetică superioară în uz mai vechi) este o ramură a matematicii pure dedicată în primul rând studiului numerelor întregi. Matematicianul german Carl Friedrich Gauss (1777-1855) a spus: "Matematica este regina științelor și teoria numerelor este regina matematicii." [1] Teoreticienii care se ocupă de teoria numerelor studiază numerele prime, precum și proprietățile obiectelor realizate din numere întregi (de exemplu, numere raționale) sau definite ca generalizări ale numerelor întregi (de exemplu, numere întregi algebrice). Numerele întregi pot fi luate fie ca atare, fie ca soluții la ecuații (geometrie diofantină). Întrebările din teoria numerelor sunt deseori înțelese cel mai bine prin studiul obiectelor analitice (de exemplu, Funcția zeta Riemann☁) care codifică proprietățile numerelor întregi, prime sau altor obiecte teoretice numerice (teoria numerelor analitice). Se pot studia, de asemenea, numere reale raportate la numerele raționale, de exemplu, aproximate de acestea din urmă (aproximare diofantină). Termenul mai vechi pentru teoria numerelor este aritmetică. La începutul secolului al XX-lea, el a fost înlocuit de "teoria numerelor" (Cuvântul "aritmetică" este folosit de publicul larg pentru a însemna "calcule elementare", și-a dobândit și alte semnificații în logica matematică, în aritmetica Peano și în informatică, ca și în aritmetica numerelor în virgulă flotantă). Utilizarea termenului aritmetică pentru teoria numerelor a recâștigat un anumit nivel în a doua jumătate a

anume se afirmă sau se neagă într-un act de gândire. Un raport aparte există între psihologie și logică. Psihologia studiază fenomenele psihice printre care se află și gândirea. Ea cercetează gândirea ca proces psihic în complexitatea lui internă și externă adică în legile sale de proces psihic de cunoaștere normală și patologică și în relațiile sale cu condițiile și factorii externi gândirii cum ar fi memoria, afectivitatea, imaginația, stările neurofiziologice, cu evoluția individuală. Logica se ocupă numai de condițiile gândirii normale, corecte luând în considerare formele eronate doar în vederea delimitării și prescrierii formelor corecte de gândire. În această situație logica nu este în conflict cu psihologia ci în colaborare, pentru că informațiile privitoare la condițiile preliminare ale unei gândiri normale sunt necesare pentru accesul la formele corecte de gândire urmărite de cercetarea logică. În această fază logica încă mai are de a face cu psihologia deoarece o categorie de cauze ce determină abaterea gândirii de la corectitudine este de natură extralogică, cauze denumite paralogisme ce sunt de competență comună psihologiei și logicii. După detașarea de factorii paralogici, logica își preia mai deplin obiectul mai având de luptat cu a doua categorie de factori care țin într- adevăr de corectitudinea formelor și operațiilor gândirii, anume cu grupul sofismelor adică a erorilor logice propriu zise. Însă odată obținute condițiile normalității gândirii și realizată trecerea la formele corecte, logica se află pe tărâmul ei unde poate opera distincțiile proprii între genurile și speciile formelor corecte și celor incorecte. În acest stadiu logica nu mai are de a face de loc cu fenomene afective, volitive sau de altă natură preocupându-se exclusiv de aspectul obiectiv al formelor gândirii. O altă disciplină care se intersectează cu logica este lingvistica. Cauza care face ca lingvistica să se întâlnească cu logica este strânsa legătură dintre limbaj și procesul gândirii. Pentru ca o formă de gândire să existe ea are nevoie de o materializare fie și în forme interiorizate, subiective. Fără această materializare nu pot fi executate operații nici asupra formelor nici asupra conținutului informațional al gândirii. Lingvistica a descoperit că între materializarea formelor gândirii și formele sale pure nu este o dependență absolută ci relativă, astfel încât o formă de gândire și un conținut se pot materializa în moduri diferite putându-se exprima de exemplu aceeași judecată cu același conținut în limbi diferite. Deci raportul dintre forma mentală a gândirii și materializarea sa lingvistică este totodată necesar și convențional. Nu există o relație de identitate între semn și înțeles. Totuși raportul dintre forma gândirii, conținutul informațional al ei și materializarea acestora este de subordonare. Gândirea subordonează limbajul. Datorită acestor relații lingvistica prin cercetarea și adecvarea limbajului ca vocabular și gramatică are o contribuție substanțială la elucidarea problemelor calității actului de gândire.

  • Teoria mulțimilor - Teoria mulțimilor este un domeniu al matematicii care studiază conceptul de mulțime. Studiul sistematic a fost inițiat de Georg Cantor și Richard Dedekind. Zenon, prin faimoasele sale aporii (paradoxuri) atrage atenția asupra consecințelor absurde care par să apară introducând infinitul actual în raționamente. De aceea se considera că infinitul actual nu este accesibil intuiției și doar infinitul potențial poate fi utilizat în raționamentele matematice. În lucrarea Teoria rațională a infinității, Cantor a depășit această contradicție încercând să numere infinitul. Emite ideea de a număra mulțimile cu ajutorul funcțiilor bijective: Două mulțimi sunt la fel de mari (echipotente) dacă există o bijecție între ele. Astfel se obțin rezultate precum: mulțimea numerelor naturale {\displaystyle \mathbb {N} !}{\displaystyle \mathbb {N} !} este echipotentă cu mulțimea numerelor raționale {\displaystyle \mathbb {Q} ,!} {\displaystyle \mathbb {Q} ,!} ceea ce contrazice percepția obișnuită conform căreia întregul este mai mare decât partea, afirmație care nu mai este valabilă în cazul mulțimilor infinite. Astfel se poate demonstra că există la fel de multe puncte pe un

segment de dreaptă (o mulțime mărginită de puncte sau un interval) câte sunt pe o dreaptă (o mulțime nemărginită de puncte), sau pe întregul plan (o altă mulțime nemărginită). - Matematici discrete

  • Combinatorica - Combinatorica este ramura matematicii care se ocupă cu studiul mulțimilor (de obicei finite) de obiecte și modalitățile de a asocia sau pune laolaltă elementele individuale ale unei mulțimi. Aceasta este înrudită cu alte domenii ale matematicii, în special cu algebra, geometria și teoria probabilităților, logica având aplicabilitate și în domenii precum informatica și fizica statistică. În particular, sunt studiate probleme de numărare (combinatorică enumerativă), de generare și de analiză (design combinatoric și teoria matroizilor), de determinare a "celui mai mare", "celui mai mic" sau a "celui mai bun" obiect al mulțimii (combinatorică extremală și optimizare combinatorică), sau cu determinarea structurilor algebrice ale acelor obiecte (combinatorică algebrică). Combinatorica vizează atât rezolvarea de probleme cât și construcțiile teoretice, fiind dezvoltate metode teoretice puternice, începând cu sfârșitul secolului XX. Una din cele mai vechi și accesibile părți ale combinatoricii este teoria grafurilor, aceasta, la rândul ei, având conexiuni cu multe alte domenii. Combinatorica este folosită frecvent în informatică pentru a estima numărul de elemente ale anumitor mulțimi.
  • Criptografie - Criptografia reprezintă o ramură a matematicii care se ocupă cu securizarea informației precum și cu autentificarea și restricționarea accesului într-un sistem informatic. În realizarea acestora se utilizează atât metode matematice (profitând, de exemplu, de dificultatea factorizării numerelor foarte mari), cât și metode de criptare cuantică. Termenul criptografie este compus din cuvintele de origine greacă κρυπτός kryptós (ascuns) și γράφειν gráfein (a scrie). Criptologia este considerată ca fiind cu adevărat o știință de foarte puțin timp. Aceasta cuprinde atât criptografia - scrierea secretizată - cât și criptanaliza. De asemenea, criptologia reprezintă nu numai o artă veche, ci și o știința nouă: veche pentru că Iulius Cezar a utilizat-o deja, dar nouă pentru că a devenit o temă de cercetare academico-științifică abia începând cu anii 1970. Această disciplină este legată de multe altele, de exemplu de teoria numerelor, algebră, teoria complexității, informatică. Până în vremurile moderne, termenul criptografie se referea aproape exclusiv la criptare, procesul de conversie a informației obișnuite (text în clar) într-un text neinteligibil (text cifrat).[1] Decriptarea este inversul, trecerea de la textul cifrat, neinteligibil, în text clar. Un cifru este o pereche de algoritmi care efectuează atât această criptare cât și decriptarea. Modul de operare detaliat al unui cifru este controlat de algoritm și de o cheie. Această cheie este un parametru secret (în mod ideal, cunoscut doar celor care comunică) pentru contextul unui anume schimb de mesaje. Cheile sunt importante, iar cifrurile fără chei variabile sunt simplu de spart și deci mai puțin utile. De-a lungul istoriei, cifrurile erau adesea folosite direct pentru criptare și decriptare, fără proceduri adiționale, cum ar fi autentificarea sau testele de integritate. În utilizarea populară, termenul "cod" este adesea folosit cu sensul de orice metodă de criptare sau de ascundere a înțelesului. Totuși, în criptografie, cuvântul cod are un înțeles mai restrâns; acela de înlocuire a unei unități de text clar (un cuvânt sau o frază) cu un cuvânt codat (de exemplu, plăcintă cu mere înlocuiește atac în zori). Codurile nu mai sunt folosite în criptografie, decât uneori pentru anumite lucruri cum ar fi desemnarea unităților (de exemplu, "zborul Bronco" sau Operațiunea Overlord) — întrucât cifrurile alese corect sunt mai practice, mai sigure și în același timp mai bine adaptate calculatoarelor decât cele mai bune coduri. Înainte de epoca modernă,

că spargerea acestuia necesita spionaj, mită, dezertări. În cele din urmă, în secolul al XIX- lea, s-a recunoscut explicit că secretul algoritmului unui cifru nu oferă multă siguranță; de fapt, s-a constatat chiar că orice schemă criptografică adecvată (inclusiv cifrurile) trebuie să rămână sigure chiar și dacă adversarul cunoaște perfect algoritmul de cifrare. Secretul cheii ar trebui astfel să fie suficient pentru ca un bun cifru să-și păstreze confidențialitatea în caz de atac. Acest principiu fundamental a fost enunțat explicit în 1883 de Auguste Kerckhoffs și este în general numit Principiul lui Kerckhoffs; el a fost reenunțat mai succint și mai direct de Claude Shannon ca Maxima lui Shannon — „Inamicul cunoaște sistemul”. Diferite dispozitive fizice au fost folosite pentru a ajuta lucrul cu cifrurile. Una din primele modalități a fost scytalul din Grecia antică, un sul folosit probabil de spartani ca ajutor la criptarea și decriptarea cu un cifru cu transpoziție. În epoca medievală, au fost inventate și alte unelte, cum ar fi grila de cifru, folosită și pentru un fel de steganografie. Inventarea cifrurilor polialfabetice, a declanșat inventarea unor unelte mai sofisticate, cum ar fi discul lui Alberti, schema cu tabula recta a lui Johannes Trithemius, și multicilindrul lui Thomas Jefferson (reinventat independent de Étienne Bazeries pe la 1900). Unele aparate mecanice de criptare/decriptare au fost inventate la începutul secolului al XX-lea, printre care s-au numărat mașinile rotitoare — cea mai celebră fiind mașina Enigma folosită de Germania în al doilea război mondial. Cifrurile implementate de mașini similare dar îmbunătățite au adus o creștere a dificultății criptanalizei după al doilea război mondial. Dezvoltarea electronicii și a calculatoarelor numerice după al doilea război mondial au făcut posibile cifruri mult mai complexe. Mai mult, calculatoarele au permis criptarea oricărui fel de date reprezentate de calculator în format binar, spre deosebire de cifrurile clasice care criptau doar texte în limbaj scris, dizolvând utilitatea abordării lingvistice a criptanalizei în multe cazuri. Multe cifruri informatice pot fi caracterizate prin operarea pe secvențe de biți (uneori pe grupuri sau blocuri), spre deosebire de schemele clasice și mecanice, care manevrează caractere tradiționale (litere și cifre) direct. Totuși, calculatoarele au ajutat și criptanaliștii, ceea ce a compensat până la un punct creșterea complexității cifrurilor. Cu toate acestea, cifrurile moderne bune au rămas cu un pas înaintea criptanalizei; este cazul de obicei ca utilizarea unui cifru de calitate să fie foarte eficientă (rapidă și puțin costisitoare în ce privește resursele), în timp ce spargerea cifrului să necesite un efort cu multe ordine de mărime mai mare, făcând criptanaliza atât de ineficientă și nepractică încât a devenit efectiv imposibilă. Cercetările academice deschise desfășurate în domeniul criptografiei sunt relativ recente — au început doar la jumătatea anilor 1970 cu specificațiile publice ale DES (Data Encryption Standard) la NBS, lucrarea Diffie- Hellman, și publicarea algoritmului RSA. De atunci, criptografia a devenit o unealtă folosită pe scară largă în comunicații, rețele de calculatoare, și în securitatea informatică în general. Nivelul prezent de securitate al multor tehnici criptografice moderne se bazează pe dificultatea unor anumite probleme computaționale, cum ar fi problema factorizării întregilor sau a calculului logaritmilor discreți. În multe cazuri, există demonstrații matematice care arată că unele tehnici criptografice sunt sigure dacă o anumită problemă computațională nu poate fi rezolvată eficient. Proiectanții de sisteme și algoritmi criptografici, pe lângă cunoașterea istoriei criptografiei, trebuie să ia în considerație în dezvoltarea proiectelor lor și posibilele dezvoltări ulterioare. De exemplu, îmbunătățirile continue în puterea de calcul a calculatoarelor au mărit gradul de acoperire al atacurilor cu forța brută la specificarea lungimii cheilor. Efectele potențiale ale calculatoarelor cuantice sunt deja luate în calcul de unii proiectanți de sisteme criptografice; iminența anunțată a implementării acestor mașini face aceste precauții necesare. În principal, până la începutul secolului al XX-lea, criptografia s-a ocupat mai ales de șabloane lingvistice. De atunci, accentul s-a mutat pe folosirea extensivă a

matematicii, inclusiv a aspectelor de teoria informației, complexitatea algoritmilor, statistică, combinatorică, algebră abstractă și teoria numerelor. Criptografia este și o ramura a ingineriei, dar una neobișnuită, întrucât se ocupă de opoziția activă, inteligentă și răuvoitoare; majoritatea celorlalte ramuri ale ingineriei se ocupă doar de forțe naturale neutre. Se fac cercetări și în examinarea relațiilor dintre problemele criptografice și fizica cuantică. Criptografia cu chei simetrice se referă la metode de criptare în care atât trimițătorul cât și receptorul folosesc aceeași cheie (sau, mai rar, în care cheile sunt diferite, dar într-o relație ce la face ușor calculabile una din cealaltă). Acest tip de criptare a fost singurul cunoscut publicului larg până în 1976. Studiul modern al cifrurilor cu chei simetrice se leagă mai ales de studiul cifrurilor pe blocuri și al cifrurilor pe flux și al aplicațiilor acestora. Un cifru pe blocuri este, într-un fel, o formă modernă de cifru polialfabetic Alberti: cifrurile pe blocuri iau la intrare un bloc de text clar și o cheie, și produc la ieșire un bloc de text cifrat de aceeași dimensiune. Deoarece mesajele sunt aproape mereu mai lungi decât un singur bloc, este necesară o metodă de unire a blocurilor succesive. S-au dezvoltat câteva astfel de metode, unele cu securitate superioară într-un aspect sau altul decât alte cifruri. Acestea se numesc moduri de operare și trebuie luate în calcul cu grijă la folosirea unui cifru pe blocuri într-un criptosistem. Data Encryption Standard (DES) și Advanced Encryption Standard (AES) sunt cifruri pe blocuri care sunt considerate standarde de criptografie de guvernul american (deși DES a fost în cele din urmă retras după adoptarea AES).[8] În ciuda decăderii ca standard oficial, DES (mai ales în varianta triple-DES, mult mai sigură) rămâne încă popular; este folosit într-o gamă largă de aplicații, de la criptarea ATM la securitatea e-mail-urilor și accesul la distanță securizat. Multe alte cifruri pe blocuri au fost elaborate și lansate, cu diverse calități. Multe au fost sparte. Cifrurile pe flux de date, în contrast cu cele pe blocuri, creează un flux arbitrar de material-cheie, care este combinat cu textul clar, bit cu bit sau caracter cu caracter. Într-un cifru pe flux de date, fluxul de ieșire este creat pe baza unei stări interne care se modifică pe parcursul operării cifrului. Această schimbare de stare este controlată de cheie, și, la unele cifruri, și de fluxul de text clar. RC4 este un exemplu de binecunoscut cifru pe flux. Funcțiile hash criptografice (adesea numite message digest) nu folosesc neapărat chei, sunt o clasă importantă de algoritmi criptografici. Aceștia primesc date de intrare (adesea un întreg mesaj), și produc un hash scurt, de lungime fixă, sub forma unei funcții neinversabile. Pentru hash-urile bune, coliziunile (două texte clare diferite care produc același hash) sunt extrem de dificil de găsit.

  • Teoria grafurilor - În matematică și informatică, teoria grafurilor studiază proprietățile grafurilor. Un graf este o mulțime de obiecte (numite noduri) legate între ele printr-o mulțime de muchii cărora le pot fi atribuite direcții (în acest caz, se spune că graful este orientat). Un graf poate fi reprezentat geometric ca o mulțime de puncte legate între ele prin linii (de obicei curbe). Dezvoltarea teoriei grafurilor a pornit de la probleme legate de jocuri și amuzamente matematice menite a testa ingeniozitatea. Acestea au atras atenția unor matematicieni experimentați ca Euler, Hamilton, Cayley, Birkhoff iar cu trecerea anilor teoria grafurilor a devenit un domeniu bogat in rezultate și de o surprinzătoare varietate și aplicabilitate.
  • Matematici aplicate Tabel Matematici aplicate Mecanica Statistica Analiza numerica Teoria jocurilor
Was this document helpful?
This is a Premium Document. Some documents on Studocu are Premium. Upgrade to Premium to unlock it.

Proiect Managementul Documentelor Petris Daniel

Course: Tehnologii Web Web Technologies

25 Documents
Students shared 25 documents in this course
Was this document helpful?

This is a preview

Do you want full access? Go Premium and unlock all 32 pages
  • Access to all documents

  • Get Unlimited Downloads

  • Improve your grades

Upload

Share your documents to unlock

Already Premium?
Cuprins
I. Matematica ................................................... 4
II. Etimologie ................................................... 5
III. Istorie ....................................................... 6
III.i. Inspirațție, mațemațică pură și aplicață, esțețica mațemațicii ........................... 7
III.ii. Perceperea mațemațicii de publicul larg ................................................................ 8
III.iii. Limbajul mațemațic ........................................................................................................ 8
III.iv. Demonsțrațția mațemațică ........................................................................................... 8
III.v. Subiecțe ............................................................................................................................. 10
III.v.a. Cantitate .................................................................. 10
III.v.b. Spațiu ...................................................................... 11
III.v.c. Schimbare ................................................................ 13
III.v.d. Structură .................................................................. 14
III.vi. Ramuri .............................................................................................................................. 15
III.vi.a. ................................................................................. Fundamente și metode
15
III.vi.b. ........................................................................................ Matematici discrete
17
III.vi.c. ......................................................................................... Matematici aplicate
20
III.vi.d. .................................................................................................... Relatii spatiale
24
III.vi.e. ................................................................... Teoreme si postulate celebre
26
IV. Bibliografie ............................................... 31

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.

Why is this page out of focus?

This is a Premium document. Become Premium to read the whole document.