Skip to document

VLSI-7 - Lecture notes 7

VLSI Design
Course

Computer-Aided Design for VLSI Design (TA10310803)

13 Documents
Students shared 13 documents in this course
Academic year: 2020/2021
Uploaded by:
0followers
14Uploads
1upvotes

Comments

Please sign in or register to post comments.

Preview text

7 : SPI CE Sim ula t ion

 Introduction to SPICE

 DC Analysis

 Transient Analysis

 Subcircuits

 Optimization

 Power Measurement

 Logical Effort Characterization

I nt roduc t ion t o SPI CE

 Simulation Program with Integrated Circuit Emphasis

– Developed in 1970’s at Berkeley

– Many commercial versions are available

– HSPICE is a robust industry standard

• Has many enhancements that we will use

 Written in FORTRAN for punch-card machines

– Circuits elements are called cards

– Complete description is called a SPICE deck

Ex a m ple : RC Circ uit

  • rc
  • David_Harris@hmc 2/2/
  • Find the response of RC circuit to rising input

*------------------------------------------------

  • Parameters and models *------------------------------------------------ .option post

*------------------------------------------------

  • Simulation netlist *------------------------------------------------ Vin in gnd pwl 0ps 0 100ps 0 150ps 1 800ps 1. R1 in out 2k C1 out gnd 100f

*------------------------------------------------

  • Stimulus *------------------------------------------------ .tran 20ps 800ps .plot v(in) v(out) .end

R1 = 2K

C1 = 100fF

Vin

  • Vout

Re sult (T e x t ua l)

legend:a: v(in) b: v(out) (ab ) 0. 500 1 1 2 time v(in) 0. 0. -+ + + + + 2 ------+------+------+------+------+------+------+------+- 20 0. 40 0. 22 + + + + + + + + + + + + + + + + 60 0. 80 0. 22 + + + + + + + + + + + + + + + + 100 0. 120 720 + 2 b + + + + + + + + + + a+ + + + + + 140 1 + 160 1 + +b + + + + + b + + + + + +a+ + + a + 180 1 + + 200 1 -+------+------+b+ + + + + +b-----+------+------+------+------+aa-----+-+ 220 1 + + + 240 1 + + + +b+ + + + +b + + + +aa + + 260 1 + + + + 280 1 + + + + bb+ + + ++ + + +aa + + 300 1 + + + + +320 1 + + + + + bb + + ++ + +aa + + 340 1 + + + + + 360 1 + + + + + b+ + +b + +aa + + 380 1 + + + + + +400 1 -+------+------+------+------+------+--bb---+------++ +aa-----+-+ 420 1 + + + + + + 440 1 + + + + + + bb+ ++ +aa + + 460 1 + + + + + + 480 1 + + + + + + b+ +b +aa + + 500 1 + + + + + + +520 1 + + + + + + +bb ++aa + + 540 1 + + + + + + + 560 1 + + + + + + + bb ++aa + + 580 1 + + + + + + + 600 1 -+------+------+------+------+------+------+---bb--++aa-----+-+ 620 1 + + + + + + + 640 1 + + + + + + + bb++aa + + 660 1 + + + + + + + 680 1 + + + + + + + bb++aa + + 700 1 + + + + + + + 720 1 + + + + + + + bb++aa + + 740 1 + + + + + + + 760 1 + + + + + + + bb++aa + + 780 1 + + + + + + + 800 1 -+------+------+------+------+------+------+------baba-----+-+ + + + + +

Sourc e s

 DC Source

####### Vdd vdd gnd 2.

 Piecewise Linear Source

####### Vin in gnd pwl 0ps 0 100ps 0 150ps 1 800ps 1.

 Pulsed Source

####### Vck clk gnd PULSE 0 1 0ps 100ps 100ps 300ps 800ps

PULSE v1 v2 td tr tf pw per

v

v

td tr pw tf

per

SPI CE Ele m e nt s

Letter Element

R Resistor

C Capacitor

L Inductor

K Mutual Inductor

V Independent voltage source

I Independent current source

M MOSFET

D Diode

Q Bipolar transistor

W Lossy transmission line

X Subcircuit

E Voltage-controlled voltage source

G Voltage-controlled current source

H Current-controlled voltage source

F Current-controlled current source

DC Ana lysis

  • mosiv

*------------------------------------------------

  • Parameters and models *------------------------------------------------ .include '../models/tsmc180/models' .temp 70 .option post

*------------------------------------------------

  • Simulation netlist *------------------------------------------------ *nmos Vgs g gnd 0 Vds d gnd 0 M1 d g gnd gnd NMOS W=0 L=0

*------------------------------------------------

  • Stimulus *------------------------------------------------ .dc Vds 0 1 0 SWEEP Vgs 0 1 0. .end

Vgs Vds

Ids

4/

I -V Cha ra c t e rist ic s

Vds

0 0 0 0 1 1 1.

Ids (A)

0

50

100

150

200

250

Vgs = 1.

Vgs = 1.

Vgs = 1.

Vgs = 0.

Vgs = 0.

 nMOS I-V

–Vgs dependence

– Saturation

T ra nsie nt Ana lysis

  • inv

  • Parameters and models *------------------------------------------------ .param SUPPLY=1. .option scale=90n .include '../models/tsmc180/models' .temp 70 .option post

  • Simulation netlist *------------------------------------------------ Vdd vdd gnd 'SUPPLY' Vin a gnd PULSE 0 'SUPPLY' 50ps 0ps 0ps 100ps 200ps M1 y a gnd gnd NMOS W=4 L=

  • AS=20 PS=18 AD=20 PD= M2 y a vdd vdd PMOS W=8 L=
  • AS=40 PS=26 AD=40 PD=
  • Stimulus *------------------------------------------------ .tran 1ps 200ps .end
a
y
4/
8/

T ra nsie nt Re sult s

(V)

t(s)

0 50p 100p 150p 200p

v(a)

v(y)

tpdf = 12ps tpdr = 15ps

tf = 10ps

tr = 16ps 0.

 Unloaded inverter

– Overshoot

– Very fast

edges

FO4 I nve rt e r De la y

  • fo4

  • Parameters and models *---------------------------------------------------------------------- .param SUPPLY=1. .param H= .option scale=90n .include '../models/tsmc180/models' .temp 70 .option post

  • Subcircuits *---------------------------------------------------------------------- .global vdd gnd .include '../lib/inv'

  • Simulation netlist *---------------------------------------------------------------------- Vdd vdd gnd 'SUPPLY' Vin a gnd PULSE 0 'SUPPLY' 0ps 100ps 100ps 500ps 1000ps X1 a b inv * shape input waveform X2 b c inv M='H' * reshape input waveform

FO4 I nve rt e r De la y Cont.

X3 c d inv M='H2' * device under test X4 d e inv M='H3' * load x5 e f inv M='H**4' * load on load

  • Stimulus *---------------------------------------------------------------------- .tran 1ps 1000ps .measure tpdr * rising prop delay
  • TRIG v(c) VAL='SUPPLY/2' FALL=
  • TARG v(d) VAL='SUPPLY/2' RISE= .measure tpdf * falling prop delay
  • TRIG v(c) VAL='SUPPLY/2' RISE=
  • TARG v(d) VAL='SUPPLY/2' FALL= .measure tpd param='(tpdr+tpdf)/2' * average prop delay .measure trise * rise time
  • TRIG v(d) VAL='0*SUPPLY' RISE=
  • TARG v(d) VAL='0*SUPPLY' RISE= .measure tfall * fall time
  • TRIG v(d) VAL='0*SUPPLY' FALL=
  • TARG v(d) VAL='0*SUPPLY' FALL= .end

Opt im iza t ion

 HSPICE can automatically adjust parameters

– Seek value that optimizes some measurement

 Example: Best P/N ratio

– We’ve assumed 2:1 gives equal rise/fall delays

– But we see rise is actually slower than fall

– What P/N ratio gives equal delays?

 Strategies

– (1) run a bunch of sims with different P size

– (2) let HSPICE optimizer do it for us

P/N Opt im iza t ion

  • fo4opt

  • Parameters and models *---------------------------------------------------------------------- .param SUPPLY=1. .option scale=90n .include '../models/tsmc180/models' .temp 70 .option post

  • Subcircuits *---------------------------------------------------------------------- .global vdd gnd .include '../lib/inv'

  • Simulation netlist *---------------------------------------------------------------------- Vdd vdd gnd 'SUPPLY' Vin a gnd PULSE 0 'SUPPLY' 0ps 100ps 100ps 500ps 1000ps X1 a b inv P='P1' * shape input waveform X2 b c inv P='P1' M=4 * reshape input X3 c d inv P='P1' M=16 * device under test

Was this document helpful?

VLSI-7 - Lecture notes 7

Course: Computer-Aided Design for VLSI Design (TA10310803)

13 Documents
Students shared 13 documents in this course
Was this document helpful?
CMOS VLSI Design7: SPICE Simulation Slide 1
7: SPICE Simulation
Introduction to SPICE
DC Analysis
Transient Analysis
Subcircuits
Optimization
Power Measurement
Logical Effort Characterization